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I
CONTINUUM MECHANICS AT THE

ATOMIC SCALEI

A. Cemal Eringen
Princeton University

Jii
ABSTRACT

The recent theories of nonlocal continuum mechanics are
summarized and applied to the problems of plane waves, crack
tip, screw dislocations, and secondary flow in rectangular

pipes. The power and potential of these theories are
demonstrated by predicting various critical physical phenomena
in the range from the global to the atomic scales. [I

1. INTRODUCTION

In all branches of the classical field theories, the ultimate desire

is to determine certain fields (e.g., displacement, velocity, stress, electric

field, etc.) at a spatial point x at time t. The differential field equations

constructed are solved under appropriate boundary and initial conditions asI

functions of uour variables x and t. For the existence and uniqueness of

solutions, cc tain smoothness requirements are placed on the geometry of the

body and the initial and boundary conditions. Within this scheme, the solu-
Stions obtained have served useful purposes in engineering and physical

annlications, stimulated many mathematical developments and extensive experi-

mental work. However, practitioners, often too busy with the difficulties

IThis work was partially supported by the Office of Naval Research and
the Army Research Office-Durham.
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of problems at hand, have forgotten or disregarded the underlying assump- I
tions of the classical field theories that make these theories inapplicable

to their problems. When such efforts did not bear fruit (as it is natural

that they should not) then a "patch work" was made to mend some part of the

field equation with arbitrary parameters and functions so that the result

can be brought within the vicinity of experiments for that particular prob-

lem. Such situations are well-known, for example, consider the plethora

of theories cf turbulence, creep, fatigue and fracture of solids, disper-

sion and absorption of E-M waves, etc. These approaches, too, having some

convincing power, proliferated the literature with so much material that

even the proponents or worshippers of the one-dimensional world seem to

express some despair in mastering a given field.

For a mathematical field quantity (e.g., a scalar, vector or

tensor) to represent a physical field (e.g., free energy, stress, electric

field) clearly certain conditions must be satisfied. Basic to these

conditions are the length and/or time requirements which arise from the

discrete inner structure of bodies and the inner transmission time of

signals. All materials are made up of some subbodies (atoms, molecules,

grains) which are attracted to each other by interatomic forces. Whatever

may be the scale, be it the atomic, molecular or a much larger scale of

grains and gross structure, we can associate an inncr characteristic length

A with a given body. This may be taken to be the atomic distance or the

granular distance depending on the nature of the physical phenomena sought.

In theories that can account for the atomic scale phenomena,we may take X

as the atomic distance, and for granular, porous or composite materials

typical size or distance of subbodies constituting the body (e.g., grain

size, pore size, average distance of fibers in a composite). In addition,

with these subbodies, there is associated a time scale T (or frequency w)

which may be the minimum transmission time of a signal (or an associated

frequency) from one subbody to the next. In some cases, this may be

taken to be an atomic or molecular relaxation time (or a related frequency).

Associated with the external stimuli (e.g., waves, distances over which load

distributions change sharply) and geometrical and surface discontinuities

(e.g., cracks, sharp notches, corners) is an external characteristic length

9. and time t (or frequency w The domain of applicabiiity of a continuum
0 0

theory depends on the ratios

( or r
0)0
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For X/Z < 1 , -/t << 1 the external stimuli excites large numbers of0

subbodies simultaneously so that the subbodies act cooperativley and the

outcome is a statistical average of the individual responses. The

individual characteristics of subbodies are unimportant and the field con-

cept at a point (e.g., at the center of mass of a group of subbodies) make

sense. The field associated with this point is the average field of a sub-

body. On the other hand, if X/Z = 1 , r/t° = 1 the individual fields

of subbodies are important and the collaborative action of subbodies are
2

influenced by their individual responses substantially. In this case,

clearly the intermolecular and atomic forces are important so that the

relative motion of a distant atom influences the behavior of any other

atom. This is the case where intermolecular distant forces and their

distributions over space and time are essential in the outcome.

All classical field theories intrinsically assume that X/k << 1

and generally 3  
T/t << 1 . Clearly, we cannot expect a reasonable treat-

ment of physical phenomena in which these conditions are violated. In

fact, this turns out to be the case for many important classes of physical

problems among which we cite: the transmission of waves with small wave

lengths (or high frequency waves) state of stress at a crack tip or dis-

location core, generation of secondary flow in pipes, turbulence, all

physical phenomena associated with the surface of a body, fracture of

solids, microcrack growth, fatigue, dispersion E-M waves, the so-called

negative dielectric, etc. To deal with these problems, we must either

revert to the use of atomic theories (e.g., lattice dynamics) or develop

theories that can reach the atomic and molecular regions.

Phonon dispersion experiments with perfect crystals indicate

clearly that the high frequency waves are dispersive and the speed of

propagation of these waves diminishes to zero as the wave length t

approaches the atontic dimension a. Classical elasticity near the infinite

wave lengths predicts correct phase velocity, but it fails in the short

wave length regions and predicts no dispersion at all. For perfect crystals

with no surfaces, the atomic lattice dynamics gives excellent results in the

2 Often X/9. I implies T/t% 1 irn many materials. However,

important cases exist in which X/Z << , T/to 1 (e.g.,
polymeric materials). Conversely, we may have X/Q 1 but T/to <1-

Such is the case for many perfect crystals.

3 T/to e< I is violated for memory dependent materials (e.g., poly-

meric substances, viscoelasLic materials).
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entire Brillouin zone (from X=- to Z=a). Thus the question arises: why

not use the lattice dynamics and forget about the field theories. The I
reason for not doing this is two-fold:

(a) Real materials, unlike perfect crystals, are too complicated in I
their inner structures. imperfections, impurities, dislocations, holes,

microcracks are too widespread. I
(b) Inter-at.,mic forces are too complicated and by-in-large they are

unknown even in their distribuitions

These two facts, when cowbined with the colossal number of dif-

ferential equations, 4 make it nearly impossible to employ the atomic theory

for real materials even with the faster computers available today. The cost

is prohibitive in all cases (especially when quantum effects need be taken

into account).

In a realistic problem, the Individual behavior of each atom

in the body is often unimportant. We are interested in the response of the

body to given stimuli within an experimentally possible length. and time

scale. Thus the practical domain of applicability of a theory is determined

by the smallest size of probes used in experimentations. Nevertheless,

one may be forced to construct theories beyond this range in order to obtain

accuracieE within the experimental ranges. Moreover, approximations are

always more meaningful when one starts with "exact" theories. It is, there-

fore, clear that it) the range between the infinite wave length and a wave

length of one atomic distance, there lies the genuine, intriguing and real i
problems of materials. This region is impossible to penetrate by the use

of the classical field theories and very difficult to cover with the atomic

lattice dynamics. The raison d'etre of continuum mechanics at the atomic

scale may be summarized as:

(i) Prediction and control of plysical phenomena triggered by long

range forces;

(ii) Imperfect and comrlicated inner structures of real matetl.als;

(iii) Inclusion of the surface physics;

(iv) Difficulty and cost of calculations based on atomic models.

Inherent in these calculations is the production of the unnecessarily large

amounts of costly data.

(v) Lack of knowledge of the atomic geometry and force fields.

With such a critique, one may sets one's standard on too high a

scale and expect from a continuum theory tu. capability for tCe treatment

4 For Newtonian theory, 3N second order nonlinear ordinary differential
equations, where N is the number of the atoms in a body.

Anj
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of some impossible problems. We must note that a continuum theory being a

field theory still involves continuous fields over a reasonable distance

and time. Thus, it will represent an approximation to the atomic theory

with the hope that perhaps averages are now based on smaller distances in

the neighborhood of the atomic distance (for example, 50 to 100 atomic

distances). If achieved, this would represent a major breakthrough over

the classical continuum theories which fnil long before such a scale is
reached.I

In this articlL, I would like to discuss briefly the recently

developed nonlocal continuum theory and present several solutions of some

critical problems that hitherto defied any rational treatment. The

mathematical formulations of the theory and details of the solutions of theseI

problems have been and are being published elsewhere (see references). The

main purpose of this article is to expose the fundamental physical ideas

underlying the nonlocal theory and to demonstrate the potential of the theory

via the solution of various problems that fall outside of the classical

field theories. In Section 2, ;we present the balance laws and jump conditions.

Section 3 is devoted to a sketch of the constitutive theory. Section 4

is concerned with the propagation of plane waves and the determination

of the nonlocal material moduli. In Section 5, we discuss the problem of

crack tip and develop a natural fracture criteria which unifies, in a most

natural way, the global fracture criteria used in engineering and Griffith's

criterion used in the fracture of solids. Section 6 contains the solution

of a basic dislocation problem,namely the screw dislocation. In Section 7,

we turn our attention to some problems in fluid dynamics, in particular,

to the generation of secondary flow in pipes of rectangular cross section.

The final section briefly mentions the prospects for the nonlocal theory.

2. BALANCE LAWS OF NONLOCAL CONTINUUM MECHANICS

The global balance laws of nonlocal continuum mechanics are

identical to those of classical continuum mechanics. Thus, the balance

laws for the entire body with volume V enclosed by a surface aV are

expressed as:

d f Ddv - T.da f g dv 0 (2.1)

V-0 V-a W-

where a is a discontinuity surface Pweeping the body with a velocity v

in the direction of its unit normal n, Fig. 1. Equation (2.1) states that

!j
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the time rate of change of the total field D in the body, excluding the

points of V which are on u(V-o), is balanced with the surface flux T of 4

and body source g. By the use of the Green-Gauss theorem one may then

transform the integral over 3V-o and carry out the time rate to obtain

(cf., Eringen [19671, p. 77).

f[-+ div(e4v-'r) - g] dv + [N>v-v) - TI da = 0 (2.2)

where v is the velocity vector and a bold-face bracket represents the

jump of its enclosure at a. In the classical field theories, a strong

assumption is made, namely: (2.2) is considered to be valid for every

part of the body however small it may be. It then follows that the inte-

grands of the two integrals in (2.2) must vanish. This is called localiza-

tion. In the nonlocal theory we abandon this strong assumption. Neverthe-

less, the localization is still possible by writing the equivalent set

+ div(Q1v-T) -g= in V-CY (2.3)

T(v-v) - ]'¶n - G on a (2.4)

subject to

f dv + G da= 0 (2.5)

V-0 C

Thus, the nonlocal theory contains certain residuals (carrying a hat "^")

which must integrate to zero. These residuals are the effects of all

other points of the body on the point under consideration. The determina-

tion of these residuals is an integral part of the theory.

The master balance laws (2.3) to (2.5) may be used to obtain

specific balance laws. We list only the volume part (eq. 2.3) for mass,

momentum, moment of momentum and energy (cf., Erignen [1972a,b], [1976a),

Eringen and Edelen [1972]).

Tt + div(pv) (2.6)

div tk +pf-•) = v - pf (2.7)

lk x tk Q(xxf- ) x0 (2.8)

I
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P-O + tk'Vk + V'q + ph - 0(c-½v'v) - Pf'v + Ph = 0 (2.9)

where a subscript following a comma indicates a partial derivative and a

superposed dot a material time derivative, e.g.,

v V de

and

p mass density , p E mass residual

t stress vectors , f body force residual

lk cartesian unit vectors , = body couple residual

Sinternal energy density , h - energy residual

q = the heat vector.

The residuals are subject to 5

S(rpip',ph)dv = 0 (2.10)

V

Equation (2.3) with the equality sign (=) replaced by (>) can be used to

obtain the second law of thermodynamics

Pr- - -q- 2h Pb + ýn > 0 in V-3 (2.11)

where rl is the entropy density, 0 is the absolute temperature and b is

entropy residual subject to

J pbdv = 0 (2.12)
V-o

The balance laws (2.6) to (2.9) and the second law of thermodynamics (2.11)

are valid for all bodies irrespective of their constitutions and geometries

(e.g., fluids, solids, blood, polymers, crystals). We now face a major

task of not c-ly establishing appropriate constitutive equations for

bodies of different constitutions but also of determining the forms of

the residuals. Various expositions of the theories are given in some of our

previous works (cf., Eringen [1972b,cl, [1974a,b,cl, [1973a], [1976a,b,c].

5 Assiming the total surface residuals vanish separately.

j . -P ' .'
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Alternative approaches to nonlocal elasticity employing variational and/or

quasi-continuum methods exist (cf., Krbner [1967], Krumhansl [1965, 1968],

Regula [1965], Kunin [1966a,b, 1967a,b, 1968]). Continuum Physics, Vol. IV,

Eringen [1976a] contains a more extensive and up-to-date literature and

various expositions of the nonlocal continuum theories.

In Section 3, we present the basic ideas underlying the consti-

tutive theory and some elementary results.
S

3. CONSTITUTIVE EQUATIONS

The characterization of the material properties are made through
the constitutive equations. As in the classical field theories we condider

as the independent variables the motions and temperatures of all points of

the body at all past times. The dependent variables are the stress t,

heat q, energy c and the entropy q. The nonlocal residuals must also be

incorporated into this group. These quantities are then considered to be

functionals depending on the motions and temperature histories of all points

of the body. It is clear that no longer Euclidean space is adequate for

the description of the constitutive functionals. It is found that a Banach

space or more usefully a Hilbert space is most appropriate for this purpose.

Here we outline briefly The situation for the nonlocal elastic solids.

The nonlocal fluids are discussed briefly in Section 7. For a thorough

discussion of constitutive equations, see Eringen [1972b,c], Eringen and

Edelen [1972], [1974a,b,c], [1976a].

3.1 Nonlocal Memory Dependent Materials
The constitutive equations of nonlocal memory dependent materials

are of the form

0 Z(X',X' aO',,k)(3.1

where p is the density in the natural state V referred to a rectangular

frame of reference XK , K-1,2,3, t E E-On is the free energy functional,

S= x(X,t) represents the motion of the material point X at time t (i.e.,

the spatial point x occupied by the material point X at time t). As

usual the axiom of continuity is posited, i.e., the inverse motion X - X(x,t)

is assumed to exist and is the unique inverse of x - x(X,t) at all points

of the body. A prime placed on quantities indicates that they depend on

X' and t' < t where X' represents any other point in the body and t' any

time at or prior to the present time t. E in (3.1) is a functional over

all argument functions of X' covering the entire body and all past times t'.

I~W ýWA- 27
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Equations similar to (3.1) are also written for the stress tensor, heat
vector, and entropy residuals.

We group the independent variables as an ordered set

FI' {x ,0',x' K } (3.2)

and define the inner product of any two such sets by

(F> F2) 1 = f 1(IX'-XI)FI(X')-F 2 (X')dV(X') (3.3)
V->2

where

x' "' + o'0' + • + '(3.4)
FI'F-2 lx2 +1 2 +X-,K2',K +1',K '2,K

ard 11(X'-Xý) called the influence function, is a positive decreasing

function of IX'-XI such taht H(O) - 1. The inner product (3.3) naturally

induces a norm (F' ,F')11 in a Hilbert space H. We are now able to assume

continuity and differentiability of the constitutive functionals, such as

,. After eliminating h between (2.11) and (2.9) and writing c = q+On, we

obtain the generalized Clausius-Duhem inequality

64n + -t v-V + wpY ^-• -•k-Y,k .q.V -- (P-½v.v) ~- f-v

+ h - pb > 0 , in V-o (3.5)

Thi-s inequality must not be violated for all independent thermomechanical

processes. With the apparatus of Hilbert space, we can now calculate

and substitute into (3.5). The inequality so obtained can be used to

derive some important results. The process is lengthy and tedious but the

outcome is elegant and meaningful. Leaving out the details, we give

below the results for elastic solids (no menory dependence, i.e., t' is

replaced by t).

3.2 Nonlocal Elastic Solids

Theorem. The constitutive equations of the nonlocal elastic Vollds

o7zt! residuals do not violate the gqobal entropy inequality if and only if

th': at,,:, of the form (cf., Eringen [1976a, p. 2211).

I}L



TP + Po -\dVA

TKk - 0 ) xk,K + f ( 0X ,KdV)kK V-i, ,K

P o1 = -p o *- - - ) ,) dV (A)
V-Z

q :0 (3.6)

Po f f (P 0  dV(A)

whr T k 0 px Z k~9 '1 X( 0:0

where T~k 0- tkXK,Z is the Piola stress. The integration is over the

entire volume at the natural state excluding the disconitinuity surface ',

61/6( ) indicates the Fr~chet partial derivative, and an asterisk

placed on parentheses represents the interchange of A and X, i.e.

[G(A,X)* ]= G(X, A)

where A is the auxilliary vector variable arising from the Frechet

derivative. It is interesting that the thermodynamic admissibility

requires the nonlocal mass residual vanish. Note that the first two

terms in the expressions of TKk and p0n are the classical terms and the

nonlocality introduces the volume integrals.

The axiom of objectivity further restricts these equations. It

can also be shown that the integral of p f~ over V-. vanishes, as demanded

by (2.10).

With this sketchy account, leaving out many of the interesting

details and results in the nonlinear theory, we copy the constitutive

equations of linear homogeneous and isotropic nonlocal elastic solids

from Eringen [1972b, see also 1976a, p. 245].

tk2 " Ae 6 + 2ve + (?le'6 + 2-Uek,)dv'

'L'Lk9 kZ + f ( k9. 1k9.
V-oY

(ekkk)e2 lkXl!

x : + ½e + + f + e ' dV' (3.7)0 ue kdk k9 2ekkeZ 9, Ulkek

V-0

fk 0 , p 0
~k

I



where ekZ is the strain tensor of the linear theory

ekR - ½(uk2 +u k) (3.8)

in which uk(x,t) is the displacement vector. In (3.7) X and p are the

classical Lame constants and X• and Vlare functions of I-XI. A more

convenient form of (3.7) is

t [A'(i_ -x)e,( ) + 21i'(Ix'-xI)ek,(x')]dv(x')
V-a

V-CT 
(3.9)

V-a + 2. +
V-0

which incorporates A and p into A' and i'.

3.3 Field Equations

Upon carrying (3.9) into (2.7), and since p and f vanish in

the linear theory, we obtain

f [(X' + 2ii')V'V''u - 1'V'xV'xu'1dv'

V-0

- f + dak+ Iý daý + p(f-ii) -0 (3.10)

where

-kT k2~-Z Z XT ' 6ke# + 2 ek (3.11)

The surface integrals in (3.10) result from using the Green-Gauss theorem

after replacing WA'/ýxk by -3X'/3x'

The integro-partial differential equations (3.10) are the basic

field equations of the linear, homogeneous, isotropic, nonlocal elastic

solids. We note the interesting surface terms containing T.' These terms

represent surface stresses (e.g., surface tension) not included in the

classical theory. Thus the nonlocal theory includes the surface physics

which is not aucounted for in the classical field theories.

We are now ready to test the theory.
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4. PROPAGATION OF PLANE WAVES

The displacement field u I u(x,t) , u2 = u 3 - 0 of a plane,

longitudinal wave propagating in the xI x-direction may be represented

by the Fourier integral

u(x, t) = [~ J x -i(Ex + wt)] dý dw(41

where ui(E,) is the Fourier transform of u(x,t). Since the body has no

surface and f-0, the field equations (3.10) in the one-dimensional case

take the form

3 2 u, 32u(X' + 211') YX-,.. dx' - p T 0 (4.2)

The Fourier transform of this gives

2 22
22 / (0)2 (4.3)

where a is the Fourier transform of a(x) defined by

a(x) -(4'+2)-X+2p 44

and cI is the phase velocity of the longitudinal waves in

classical elasticity. For the classical limit =-l and therefore the

elastic waves are non-dispersive. From (4.3) it is clear that nonlocal

elasticity predicts dispersive waves.

In the lattice dynamics, it is well-known that the elastic

Swaves are dispersive and the dispersion curves within one Brillouin zone

(the wave length between the atomic distance a and infinity) are typically

as shown in Figures 2,3. In these figures, the dispersion curves for the

transverse waves are also shown. There exists a simple one-dimensional

lattice dynamics model which consists of a chain of atoms of mass M

attached to each other by linear springs of equal length, Figure 4. This

model known as the Born-K~rmfn model, is based on nearest neighbor inter-

actions. The dispersion relations for this model is found to be (cf.,

Brillouin [1953, p. 41), Figure 5,

2 2 4

W 2 / sin2 (a/2) (4.5)

where is the atomic distance. Tt is clear that such a model, even though

it is crude, is much more realistic than the classical elasticity for wave

M_.
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numbers MD close to the atomic distances. Of course, at ý-O (infinite

wave length) (4.5) gives the same result known in classical elasticity.

Thus, if we wish the nonlocal theory to give identical results to the

atomic theory, we must see to it that the dispersion relations coincide.

Using (4.3) and (4.5), we can determine by inversion c(x), (Eringen

[1972b], [1974c]). The result is (see also Figure 6)

a(x) =1 (a - IxII_ , 'I < 1
a aW

(4.6)

a

Of course, by means of the same considerations for transverse waves, we

obtain p'/p = a so that both X'(Ix'-xI) and p'(Ix'-xj) are determined.

= a(jx'-xl) (4.7)

This remarkable result indicates that if the nonlocal moduli vary according

to (4.7), the calculations based on the nonlocal theory and the atomic

lattice dy.-amics will be identical.

Note also that the area under the c-curve is unity so that the

classical elasticity is obtained when a-+O, i.e., a(x) becomes a Dirac

delta measure. For the two- and three-dimensional cases, of course, we

have to normalize a(x) by taking the surface or volume integrals of

a(jx'-xj) over the regions occupied by the body and equate it to unity, i.e.,

f c=(I•'-•I)dv(•) = 1 (4.8)

V

For the one-dimensional case above this was done by the selection of c

as the classical limit.

The foregoing calculations thus determine the nonlocal moduli

fully without any unknown parameters so that it must now be tested

against other known results. This was done by Eringen [1973b] for

Rayleigh surface waves and the dispersion curve found is compared in

Figure 7 with the computer calculations of Gazis et al. [1960] based on the

atomic lattice dynamics (cf., Maraddudin et al. [1971, p. 531]). The

result is unbelievable in that the two curves coincide in the entire

Brillouin zone.

I.
1Z-
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Of course, the nonlocal moduli (4.6) are not the only ones that

can give us reasonable results. In fact, any non-negative decreasingI

function with finite support will do just as well. Better yet, one can

employ the abundant results from phonon dispersion experiments and by

curve fitting obtain a more realistic ax(x). Computational problems *
often force us to select functions that are manageable in calculations.

Since we cannot realistically claim that the theory can expl.hin all the

physical phenomena associated with few atomic distances, such flexibility

is justifiable. Thus, for example, another good function is the Gaussian

distribution

r2
a(Ixý'-xI) a = -)W- (4.9)

where a is a constant to be fixed to satisfy (4.8). Here a is the atomic

distance and k is a constant. The Fourier transform of (4.9) for the one-

dimensional case is shown in Figure 8 for various k. For k=1.65, in fact,

this curve_ coincides with (4.5) in the entire Brillouin zone with an error

less than 0.2%. Note, however, that (4.9) will decay fast with Ix-x even

if it does not have a finite support. Nevertheless, it goes to a Dirac

delta measure as a--+O so that it is a perfectly suitable nonlocal modulus.

5. CRACK TIP PROBLEM AND FRACTURE MECHANICS

An outstanding example of the difficulty which has been the

main cause of the proliferation of fracture theories is the stress

singularity predicted by the classical elasticity at a crack tip. A

plate with a line crack, subject to uniform tension at infinity perpen-

dicular to the direction of line crack, sustains considerable tension

before it starts to tear. Yet classical elasticity predicts an infinite

hoop stress at the tip of the crack (Figure 9 ). Because of this

singularity a perfectly good criterion of brittle fracture, the maximum

stress hypothesis used for all other types of bodies with no sharp

geometrical changes, had to be abandoned. Griffith [1920] discovering

this difficulty, said:I.

"To explain these discrepancies, but one alternative seemed open.
Either the ordinary hypotheses of rupture could be at fault to
the extent of 200 or 300 percent, or the method used to compute
stresses in the scratches were defective in a like degree."

With his now celebrated work, he gave the criterion for fracture
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2E (5.1)
t2 C CG ¼T¥l(5)I)

where t is the applied tension and k is the half crack length. The
Griffith constant CG is expressed in terms of Young's modulus E, Poisson's
ratio v and the surface tension energy y. According to (5.1) when the applied

stress satisfies (5.!), the crack begins to propagate.

The past half century registered many advances in this field

but it can be said that essentially all are influenced by this main idea

and the nonexistence of a rational theory that predicts a finite stress

at a sharp crack tip. Griffith arrived at this result by using the
Inglis [19131 solution of the Elliptic: hole problem and letting the

excentricity of the ellipse approach zero to obtain a crack. After which

he argued that the work done for extending a crack of length 22Z by an

amount 2dZ must be equal to the surface tension energy. The Griffith

criterion may be criticized as follows:

(a) The surface tension energy y is that of a fluid. For solids

there may be other energies arising from surface stresses;

(b) The ellipse shrinking to a crack may not be "uniform," i.e., J
other shapes may give different limits;

(c) The shear strain at the crack tip is large, namely, fr/4. The

crack opens to an ellipse;

(d) Worst of all, the crack tip stress is infinite no matter how

small the applied load may be.

To remedy some of these defects, Barenblatt [19621, Khristianowich

[19551 and Dougdale [19601 introduced compressional cohesive stresses in

a small region near the crack tip. By determining the distribution of this

superficial stress, Barenblatt closed the tip into a cusp, Figure 10.

Kristianowich and Dougdale accomplished the same result by assuming that

a constant compressive stress is distributed over an unknown length 6

beyond the geoeetrical tip o' the crack so that the tip is closed for

a particular value of 6 (Figure 11).

Goodier and Kanninen [19661 employed :'n atomic model with non-

linear springs at the edge of the crack and linear springs elsewhere.

Clearly, all these semi-rational and, to some extent, patched-up

theories could eliminate some of the objections, nevertheless they

replaced the old objections by new ones. For example, how can one conceive

of compressive stresses at a free surface unless they are externally applied.

v.1



LIL

-17-

Of course, arguments may also be advanced by insisting that there

is no such thing as a sharp crack. The crack tip always has a small

radius oi curvature even if we produce a crack by removing one line of

atoms. Therefore, the singularity is superficial and is the result of

a mathematical idealization. While this is true, we have no way of

measuring the curvature at the crack tip for these limiting situations.

For example, by the removal of one layer of atoms to form a crack do we

get positive or negative curvature? What is its magnitude? Since the

stress at the crack tip is highly sensitive to the curvature, according

to Inglis' solution of elliptic hole problem, in the absence of

definitive answers to these questions, no scientific progress is possible.

There exist solutions for the Elliptic hole problem by using

polar theories, e.g., couple stress theory (Sternberg and Muki [1967)),

micropolar theory (Kim and Eringen [1973]). These solutions also contain

the same type of singularities in the limit when the ellipse collapses

to a line crack.

Recently, we gave solutions for the problem of a line crack by

means of the nonlocal theory, cf., Eringen and Kim [1974a,b], Eringen [1976d],

Eringen et al. [1976]. Remarkably, the nonlocal theory not only predicts

finite stresses everywhere, but also allows us to unify the fracture criteria

in a physically meaningful way. In fact, by use of the maximum stress

hypothesis for brittle fracture, we will arrive at the Griffith criterion

with the extra benefit that the Griffith constant is now fully determined.

As a result of this approach we have been able to calculate the atomic

cohesive stresses, which are found to be in excellent agreement with Lhose

known from the atomic theory of lattices and experiments. Here we

present a brief account of these results.

Introducing the classical Hooke's law

Ok•(W) -o• Xe' (x')6k? + 2ie,(x') (5.2)

We write (3.9) as

tki = f a•(1'-xs~)Ok (r')dv(x') (5.3)

V I
Substituting this into Cauchy's equations (2.7), with ý=O, f=O in the

static case, we obtain

¶ VY - ~
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f c(ix'-xI)ak (x')dv(x') -)a a(Ix'-x-)ky(x')dv(x') 0 (5.4)
V 3V

where we used the Green-Gauss theorem (in absence of a). When the body

extends to infinity in all directions or the surface tensions are

negligible, the surface integral in (5.4) vanishes and we have

.f ~ 0(5.5)
I •Ix'xl~kt,k, (X')lv(x') =0(5)

V

It can be proven that, cf., Eringen [1976e], when a(jx'l) is a continuous

function of x' with a bounded support where a>0, (5.5) is satisfied if

and only if

akk =0 (5.6)

Using (5.2), this gives the classical Navier's equations. For the two-

dimensional case the solution of Navier's equations for the displacement

fields are, (cf., Sneddon [1951, p. 4041):

u(x,y) = [ A + (- -y B(k exp(-Ikly-ikx)dk,

/2ý k(IvI

00 (5.7)

v(x,y) -A�i [A(k) + yB(k)] exp(-Ikiy-ikx)dk

where A(k) and B(k) are two functions to be determined from the boundary

conditions (see Figure 12).

=0 , y=0 Vx

t = -t y = 0 , lxI < £ (5.8)
yy 0

v = 0 , y =0 , IxI >£

Using (5.8) 1 we express B in terms of A and the remaining two conditions

lead to a pair of dual integral equations which must be solved to

determine A(k). These equations are non-sintguZar. We have reduced them

to a single Fredholm equation of the second kind and solved it numerically

(see Eringen et al. [1976]). By superimposing t to the stress field,0

we obtained the solution of the crack problem, in which the crack surface

is free of tractions but at y=- a uniform tension to stretches the plate.
0i

VK(
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The Hoop stress distribution along the crack line is shown in

Figures 13 and 14. It is clear from these figures that the stress

t has a maximum at the crack tip thereafter diminishing smoothly totyy

the classical elasticity solution. Important to the fracture mechanics

is the maximum stress (or the stress concentration) which is given by i
P = tyy(ZO)/to I C(v)(2/a)'½ (5.9)

The function C(v) depends on Poisson's ratio v only and it falls into

the region 0.676 < C(v) ! 0.845 for v=0 to 0.5, see Figure 15. For

v=0.25, C=0.713. We observe:

(i) The hoop stress (for that matter all stress components) is

finite as long as aY0 (a=atomic distance). In the continuum limit - O

the classical square root singularity appears.

(ii) By equating the maximum stress to the failure stress, we establish

a failure criterion. In facc, we state that: when t - t - cohesive
y y max i

stress, fracture wiZl occur.

This most natural criterion is not only physical in nature

because of attributing the fracture to bond failure but it also agrees

with the engineering failure criterion commonly used in structural

mechanics. This has only been possible since the nonlocal theory removes

the stress singularity at the crack tip.

From (5.9) it now follows that

2 2 2toZ - [a/2 C (v)] t = C (5.10)
0c

Alas, this is the Griffith fracture criterion for brittle fracture with

the extra benefit that CG is now fully determined. No ad hoc constant

such as surface energy y appears in (5.10);

(iii) It is clear that CG C1 a material property. This seemingly

simple and obvious result has been under extensive exper*Ltental investiga-

tions until recently. In fact, engineering fracture t .• 's defined by

KI am to I (71C) was tested extensively (cf., Frec' et .i. [19;1];

Brown and Strawley [1966].

(iv) Experimenters also determined the surface ten.ion energy by

one means or another for various materials. While the accuracy of such

experiments o.re often questioned if we equate Cr given by (5.10) to

the Griffith expression (5.1),, we obtain

t a Ky K 8C02(M)i'/ii(i-v) (5.11)c

"%VMA .
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Calculations may now be carried out to d'termine the cohesive stress for

various materials. This was done by Eringen [1976d) and the results are

listed in the column next to the last in Table 1. The entries in the

last column of this table are estimates of t /E based on atomic considera- I
tions, see Lawn & Wilshaw [1975, p. 160]. The remarkably close values

obtained are once again indicative of the far-reaching power of the

nonlocal theory.

6. SCREW DISLOCATION

A screw dislocation is obtained if the lower face of a radial

plane of a cylinder is given a constant relative displacement b, in the

direction of the axis of the cylinder with respect to its upper face,

Figure 17. Here b i! known as the Burgers vector. Employing cylindrical

coordinates, r,6,z,, the classical elasticity solution of this problem

may be expressed as (cf., Lardner [1974, p. 72]).

b8Uz u 27- Ur M u6 M 0 (6.1)

whE-2e (u,,uz) denote the componeitts of the displacement vector in

cylindrical coordinates. For the local stress field, ak• we have

ub
0 ze 6 2Z Y , all other ak. =0 (6.2)

so that any cylindrical surface X-R is free of traction. The solutions

(6.1) and (6.2) are also the solutions of the problem in nonlocal elasticity

(cf., 5.6). However, to calculate the stress field in nonlocal elasticity,

we must perform the volume integration in (5.3). Employing (4.9) for

a(Ix'-xI), calculations were carried out (cf., Eringen [1976e]). The

result is

t Ub [1 exp(-k 22 /a 2) , all othcr tk, a 0 (6.3)tze = .7 k.0-

We have also carried out calculations for the strain energy function E

given by (3.9)

E= b2L [C + Zn(P2 ) - Ei(-P )] P kR/a (6.4)8Tr
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where R is the outer radius of the cylinder, C is the Euler's constant

and Ei(x) is the exponential integral function,

C - 0.577216... Ei(-x) - -- dt , x>O (6.5)
x

The solution of this problem in classical elasticity is given by

tz0 - 2--k (6.6)

Z -Pb tln(R/ro) (6.7)

where L is the length of the cylinder. In classical elasticity, not only

the stress is singular at t=o bu* also the stored elastic energy. For

that reason we are forced to consider the Polution valid only in a hollow

cylinder with inner radius & . While the stress singularities are common0
in elasticity, the energy singularity is certainly a strange phenomena

that cannot be tolerated.

The nonlocal elasticity solution of this problem predicts a

shear stress with no singularity (cf., Eq. 6.3). The stored energy is

not singular either (see Eq. 6.4). In the classical limit as a-+O both

(6.3) and (6.4) reduce to the classical results (6.6) and (.6.7). I
Because of the singularities present in the classical solutions,

solid state physicists have invented various atomic devices and terminology A

to overcome this difficulty. The semi-continuum model of Peirls [19401

and Nabarro [19471 are two such examples. It must be remarked that ir

the classical solution tzo-C as X - 0 at o=0, tze-+-) -O as 4-- 0

6=21T. Clearly,the physical considerations demand that tz0 must be skew-

symmetric with respect to x and thus must vanish at t=0. Indeed, this

is born out by the nonlocal solution tz 0 =O at k=O, Figure 17. However, it

possesses a maximum at the root 0=m of

exp(p 2 1 + 2 2 , P = kk/a (6.8)

The maximum shear stress is

t Pbk Pm(l + 2P )-i (6.9)
t z max -- -M

We now obtain a very important result for failure. In fact, ft is natural

to assume that the failure occurs when tz0 max is equal to the cohesive

NNW,
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shear stress t . We can calculate the critical shear to cause a disloca-c

tion, having a Burger's vector b. From (7.8) this is obtained to be

tffi0.3191 ,bk (6.10)

c 7va

We may estimate the value of k from the rate of attenuation of interatomic

forces. For example, for k-1.073 the interatomic forces will reduce to

1 percent of their values at two-atomic distances. This value is also

close to the. value estimated by the dispersion of one-dimensional waves

(cf., Figure 8). Using k=i.073 we can calculate the stress that will

just overcome the cohesive shear stress necessary to -reate a dislocation

of one atomic distance. For face-centered cubic metals b=a//6 and we
obtain

c /i 0J• •45 (6.11)

For aluminum, the tabulated value is T /v=0.039 and for copper at 20'C,
c

'tc/w=0.039 (Kelly 11966, p. 19]).

The problem of edge dislocation has also been treated (ErIngen

[1966f]). While the problem is somewhat more complicated,the results are

are again extremely gratifying. Excellent agreements obtained with the

atomic lattice dynamics and experiments once again point to the great

potential of the nonlocal continuum theory.

7. SECONDARY FLOW IN RECTANGULAR PIPES

The theory of nonlocal fluid mechanics has already been developed

in our previous work (cf., Eringen [1972c], [1976a]). Here we discuss,

briefly, some very significant results in the development of vortices

in a rectangular channel.

A viscous fluid contained in a long rectangular pipe, initially

at rest, is set into motion by an impulsively applied, and maintanined uni-
form pressure gradient, Figure 18. The velocity profile predicted by the Navier-

Stokes theory is unidirectional v -v =0 v =v(x,y,t), as shown in Figure

19 for 2xl pipe. Experiments show that this type of flow is unstable.

When the Reynolds' number exceeds a certain critical value (based on the

mean velocity and hydraulic diameter, 2000), secondary flow sets in and

the flow regime becomes turbulent. The Navier-Stokes theory contains no

direct mechanism for the creation of secondary flow. Although some

higher order rate-dependent fluids (e.g., Reiner-Rivlin) have been

employed to explain the secondary flow patterns, the applicability
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of these models and the physical basis of the secondary flow mechanisms

in these theories have been questioned. The structure of secondary

flow in a 2x1 rectangular pipe, as observed experimentally, is shown

in Figure 20. It is known that the vortices of the secondary flow

emanate from the corners of the pipe. For the nucleation of the flow, it

is reasonable to assume that an internal friction mechanism on the atomic

or molecular scale is necessary. This means again, a long range inter-

molecular effect which is lacking in all previously known fluid flow

theories.

The nonlocal fluid dynamics was developed in our work [1972c].

Since turbulent stresses are nonlinear in character,we have recently
extended this theory to include second degree nonlinear effects in the
constitutive equations. For an incompressible fluid, the stress

constitutive equation was found to be of the form

tkZ = -P6kM + 2lddkZ + I l'(Ix'-xI)(xý-xk) [d m(x')-dkm(x)]Im(X')

V

+ (X'-x)[d (X')- dkm(x)]m(x'))dv(x') (7.1)
99. km~ km m'

where dk 9" is the deformation rate tensor, p(x,t) is the pressure,

is the nonlocal viscosity modulus and a k(X') is an objective measure of

relative motion (not present in classical theories, cf., Eringen [1972c])

dk k (. + v), (x') - ½(v + '
(7.2)

W) -½(xm-xm)[Vk(X') - vk(x)] + vk(X) - Vk(X)

Here x is a spatial point at which tkp is evaluated; x' is any other point,

and v(x) and v(x') are the velocity fields at x and x' respectively. It

must be noted that (7.1) does not violate the second law of thervmodvnamics,

I (t + P6)d dv 0j o 9,1 M, ký
V

is satisfied for all possible motions. In fact, (7.1) is not only

justifiable on physical grounds (such as objectivity, thermodynamic

admissibility) but turns out to be in accordance with a representation

theorem on additive functionals due to Frideman and Katz [196"] although

A 7
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we were not aware of the existence of this theorem at the time of the

publication of our theory.
Employing (7.1) in Cauchy's equations of motion (2.7) with 6-0

i-0, we obtain three integro-partial differential equations for v and p.

Together with the continuity equation div v-0, this set is adequate for

the determination of the velocity field. We have carried out these

calculations to determine the velocity field in a long rectangular pipe.

v = { u (x,y,t) , v (x,y,t) , w (x~y,t)}

For the nonlocal modulus P' we have selected

= O exp(-kI 0-x'i)

where p and k are constants. In general, k can be chosen so that
o 0

11(0x'-ýI) attenuates properly over a characteristic length of the problem

(e.g., a mixing length). 0o is a normalization factor that was chosen

to produce a proper relative size for the secondary flow with respect to

the mean flow. This constant is unimportant as far as the mechanism of

the secondary flow is concerned.

By means of a finite difference technique, computer calculations

were carried out for a 2x1 pipe. The streamlines of the secondary flow

at various times are shown in Figures 21-25. The pressure gradient

was selected to yield a Reynolds number of approximately 2500 which is

in the transition region to turbulence. Small eddies form at the corners

(Figure 21) and then gradually diffuse to the interior of the pipe. The

steady state solution (Figure 25) is in remarkable agreement with experi-
mental results shown in Figure 26. The lines of constant velocity
emanating from corners (dotted lines in Figure 26) are 450 lines due to

the symmetry of the problem. Computed lines of constant velocity (Figure 25)

are also approximately 450. Experimentally available secondary flow

profiles for a Reynolds number 50,000 are shown in Figure 26. These

profiles are relatively flat at th,! pipe wall because of high Reynolds

numbers. The secondary flow profiles (Re=2500) predicted by the nonlocal

theory are shown in Figure 27. The comparison of profiles are favorable

even though Reynold's numbers are substantially different.

Clearly, much remains to be investigated for more conclusive

judgments on the theory of nonlocal fluid mechanics. This example is

IA
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shown in order to induce adequate curiosity and appetite to learn and

apply the theory to many important problems in turbulence that have

remained in an ac hoc and heuristic stage for a long time.

8. PROSPECTS

With this rather brief account, I have tried to present some

of our recent research efforts in the field of nonlocal continuum

mechanics. Examples of solutions are presently too few on account of the

fact that the theory is only a few years old. It is yet to be more

fully challenged and tested on other critical grounds. While we are,

substantially, in possession of the solutions of several other problems

(e.g., punch problem, surface tension and E-M wave propagations) I

believe for this lecture, the solutions presented bring to focus the power

and potential of the theory. The theory cannot be accused of having a

large number of parameters for the purpose of curve-fitting. Once the

nonlocal moduli are determined by means of some simple atomic or molecular

considerations (or experiments) the theory is fully determinate for a

given material. From the foregoing acid tests, it is clear that we can

discuss the nature of physical phenomena on the atomic scale. Since the

theory is a continuum theory, in principle, every problem is reducible to

a boundary-initial value problem which is often not possible in the atomicj

theories on account of the free surface conditions and complicated inner

structure. The surface physics is also incorporated into the theory,

which is an unusual asset yet to be tapped.
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Figure Captions

Figure 1. Moving Discontinuity Surface a

Figure 2. Dispersion Relations for Copper, after Sinha & Squires [1963]

Figure 3. Experimental dispersion curves for phonons propagating in the
[100] direction in aiuminum. For this direction of propagation,
the reduced wave number is given by C = (a/2r) Iql, where q is
the phonon wave vector, and a is the lattice constant of
aluminum. The error-in '. is estimated to be in the range 1-2

Figure 4. Infinite Lattice with the Nearest Interactions (Born vonK~rmdn

model)

Figure 5. Dispersion Relations (1 Brillouin Zone)

Figure 6. Nonlocal Elastic Moduli

Figure 7. Dispersion of Surface Waves

Figure 8. Dispersion Curves Based on Gaussian Type Nonlcal Moduli

Figure 9. Hoop Stress Along Crack Line (classical elasticity)

Figure 10. Barenblatt's Hypothesis

Figure 11. Khristianowich-Dougdale Hypothesis

Figure 12. Crack Problem

Figure 13. Hoop Stress Distribution Along Crack Line P = t yy/t°

Figure 14. Hoop Stress Distribution Along Crack Line P t yy/t

Figure 15. Material Function C(v)

Figure 16. Screw.Dislocation

Figure 17. Shear Stress in Screw Dislocation

Vigure 18. Flow in Rectangular Pipe Induced by an Impulsively Applied
Pressure Gradient -G

Figure 19. Velocity Profiles at Centerline of 2xl Rectangular Pipe from
Navier-Stokes Theory (obtained numerically)

Figure 20. Experimental Secondary Flow Velocity Profiles at Various
Stations Along the x-axis in 2xl Rectangular Pipe After Gessner
and Jones 119651
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Figure 21. Secondary Flow Pattern in 2xl Rectangular Pipe Obtained from
the Nonlocal Fluid Mechanics. RE • 2500, v 0/p - -100 ft- 2 ,

S= 1000 ft-0

Figure 22. Secondary Flow Pattern in 2xl Rectangular Pipe Obtained from
the Nonlocal Fluid Mechanics. RE ' 2500, p 0op = -10 6 ft- 2 ,

k= 1000 ft-I

Figure 23. Secondary Flow Pattern in 2xl Rectangular Pipe Obtained from
the Nonlocal Fluid Mechanics. RE • 2500, po/p - -106 ft- 2 ,
k 1 1000 ft-I

0

Figure 24. Secondary Flow Pattern in 2xl Rectangular Pipe Obtained from
the Nonlocal Yluid Mechanics. RE 2500, po/p = -106 ft- 2 ,k = 1000 ft-

o

Figure 25. Seco~adary Flow Pattern in 2x1 Rectangular Pipe Obtained from
the Nonlocal Fluid Mechanics

Figure 26. Secondary Flow Pattern at Various Stations Along the x-axis
in 2xl Rectangular Pipe Obtained from the Nonlocal Fluid
Mechanics

Figure 27. Secondary Flow Velocity Pro'iles at Various Stations Along
the x-axis ih1 2xl Rectangular Pipe Obtained from the Nonlocal
Theory
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